Коломицев М. А., Ліпатов А. А. Інститут телекомунікаційних систем НТУУ “КПІ” просп. Перемоги 37, Київ, 03056 тел.: (8044) 2416897

Анотація Запропоновано реалізований в середовищі ГІС алгоритм автоматичного розрахунку дифракційних втрат на радіорелейного прольоті.

I. Вступ

При проектуванні мереж радіорелейного зв’язку доводиться багаторазово розраховувати множники ослаблення радіорелейних прольотів (далі прольотів). Найбільш трудомісткою операцією при цьому є визначення дифракційних втрат, необхідних для обліку ЕМС з віддаленими станціями і для оцінки надійності зв’язку.

Для визначення дифракційних втрат необхідна інформація про профіль місцевості, формі і величині перешкод. Перешкоди зазвичай апроксимуються стандартними шаблонами, по яких і обчислюється ослаблення. При розрахунку «вручну» аппроксимирующую поверхню будують за профілем, побудованому з використанням географічної карти. Однак, такий розрахунок великої кількості профілів пов’язаний з істотними витратами часу. Тому, для автоматичного розрахунку дифракційних втрат розроблений алгоритм і реалізований у вигляді програмного коду мовою Visual Basic в ГІС АгсView 8.2 з використанням цифрових карт.

У рекламних проспектах деяких фірм є тільки посилання на подібні алгоритми, а зміст їх не розкривається.

II. Основна частина

Підготовка вихідних даних для розрахунку.

Використання ГІС і цифрових карт місцевості дозволяє автоматично будувати профілі прольотів шляхом перетину площини проходить, через два РРС і центр Землі, з її поверхнею. Результатом перетину є таблична залежність Z (x) висоти точки поверхні над рівнем моря від її видалення до однієї з РРС. Рефракція враховується еквівалентним Земним радіусом, який вносить зміни до Z (x).

Основні модулі алгоритму. Структурна схема алгоритму представлена ​​на рис.1. До складу алгоритму входять програмні модулі, що дозволяють вирішувати завдання:

класифікації профілю;

визначення кількості перешкод на профілі;

апроксимації перешкоди трьома стандартними шаблонами;

розрахунку ослаблення внесеного кожним перешкодою;

розрахунку ослаблення внесеного двома перешкодами;

– Розрахунку множника ослаблення багатьох перешкод по емпіричним співвідношенням Дейогута [1].

Опис роботи алгоритму.

Вхідними даними алгоритму є: Z (x) Профіль з урахуванням кривизни Землі і рефракції; hi, h2 висоти підйому антени над поверхнею Землі. Відповідно до [2], кожен реальний профіль відносять до відповідного канонічного типу прольоту. Якщо проліт відкритий, то робота алгоритму закінчується.

При закритому або напівзакритому прольоті визначається кількість перешкод на ньому. Для кожного перешкоди визначаються точки перетину його поверхні лінією прямої видимості між радіорелейними станціями (РРС). Кожна перешкода апроксимується одним з трьох видів поверхонь: клиновидним, окружністю або гібридно-клиновидним. Параметри апроксимуючої поверхні вибираються за критерієм мінімуму середньоквадратичного відхилення D точок апроксимуючої поверхні від поверхні перешкоди. Для уточнення результату передбачено введення поправочного коефіцієнта для точок апроксимуючої поверхні, що знаходяться нижче точок перешкоди. Параметри апроксимуючої поверхні знаходять методом «золотого перетину». Подібним чином це ж перешкода апроксимується та іншими шаблонами. В якості апроксимуючої поверхні вибирається та, яка має найменше відхилення від поверхні профілю.

Розрахунок ослаблення, внесеного перешкодою, визначається згідно [11:

– Де h висота перешкоди над лінією прямої видимості, / Iдліна хвилі, dvd2похилі відстані від верхньої точки перешкоди до відповідної РРС. В залежності від форми апроксимуючої поверхні перешкод та їх кількості це вираз коригується [1].

При двох і більшої кількості перешкод дифракційне ослаблення знаходиться по емпіричним співвідношенням [1, § 4.5].

III. Висновок

Розроблений алгоритм застосуємо для розрахунку дифракційних ослаблень на прольоті при розрахунку його множника ослаблення. Множник ослаблення необхідний для обліку ЕМС між заважають станціями, що працюють на одній частоті або на близьких частотах, а також розрахунку [2,3] надійності (коефіцієнта готовності) прольоту.

Особливостями запропонованого алгоритму є:

– Його виконання у вигляді кінцевого продукту (пакета програм) і у вигляді програмних модулів, які можна використовувати в інших програмах;

– Можливість вибору між точністю розрахунку і його швидкістю.

Рис. 1. Алгоритм розрахунку множника ослаблення, внесеного дифракцією Fig. 1. Algorithm for calculating of a diffraction-induced propagation factor

CALCULATION OF DIFFRACTION LOSSES OVER RADIO RELAY SPANS USING GIS TECHNOLOGIES

Kolomytzev M. A., Lipatov A. A.

Research Institute of Telecommunications, National Technical University of Ukraine ‘Kyiv Polytechnical Institute’

37 Prospekt Peremogy, Kyiv, Ukraine, 03056 phone +380(44) 2416897

Abstract An algorithm realized in the GIS environment for automatically computing diffraction losses over radio-relay spans is proposed.

I.  Introduction

The design of radio relay networks involves repeated calculations of propagation factors for radio-relay spans. The most laborious procedure here is the definition of diffraction losses which is necessary for determining the EMC with remote stations and for estimating the link reliability. To calculate diffraction losses automatically, a Visual Basic algorithm has been developed for use in the GIS ArcView 8.2 utilizing digital maps.

II.  Main part

Preparation of input data for calculation. GIS and digital maps allow for an automatic span profiling by intersecting a plane passing between two radio relay stations and the center of the Earth with its surface.

Principal modules of the algorithm. The algorithm comprises program modules that solve the following tasks:

–    profile classification;

–    determining the number of obstacles along the profile;

–    approximating an obstacle using three standard templates;

–    calculation of attenuation introduced by each obstacle;

–    calculation of attenuation introduced by two obstacles;

–         calculation of the propagation factor for a multitude of obstacles according to Deuogut’s empirical relations [1 ].

III.  Conclusion

The implementation of the algorithm makes it possible to reduces the time and costs of design.

Among the features of the algorithm are the following:

–         it may be used either as a complete product (software package) or separately as program modules for integration with other software;

–         it offers a choice between the accuracy of calculations and their speed.

Анотація Отримано аналітичні залежності ймовірності виявлення сигналу для визначення умов виявлення випромінювань в радіосистемах, що використовують складні сигнали. Запропоновано чотиривимірні робочі характеристики виявлення, що включають в якості додаткового параметра базу сигналу.

I. Вступ

Радіосистеми, що функціонують відповідно до критерію Котельникова (РСК), системи радіозв’язку, радіоуправління, часто піддаються впливу систем руйнування інформації, або радіосистем, що використовують для виявлення випромінювань алгоритми відповідно до критерію НейманаПірсона (РСНП) [1, 2]. В цьому випадку виникає необхідність визначення умов виявлення випромінювань, по-перше, для оцінки ефективності РСК при здійсненні несанкціонованого доступу, і, по-друге, для забезпечення умов функціонування РСК, що ускладнюють втручання несанкціонованої сторони (знижують ефективність РСНП).

II. Основна частина

Традиційно, ефективність РСНП може бути охарактеризована кількісними співвідношеннями між імовірністю пропуску сигналу р, ймовірністю помилкової тривоги а і величиною ft2 (Відношення енергії сигналу Es до спектральної щільності потужності перешкод N). Така залежність називається робочою характеристикою виявлення [1, 2].

Для РСНП як показник ефективності використовується ймовірність правильного виявлення сигналу

де ао = const. Здійснення альтернативної оцінки ефективності РСНП можливе або шляхом застосування іншого критерію якості, або пошуком інших характеристик радіосистем.

Відомим параметром, що представляє комплексну частотно-часову характеристику сигналів, є база. Для радіосистем зі складними сигналами справедливі співвідношення [3]:

де 2Fcширина спектра складного сигналу на радіочастоті; Т тривалість аналізованої частини елемента сигналу.

При виявленні стохастичних сигналів на тлі нормального білого шуму існують наступні асимптотичні співвідношення [1]:

Для оцінки можливостей виявлення РСНП, що використовують складні сигнали, доцільно ввести додатковий параметр базу сигналу Вз. В цьому випадку, ймовірність (1) можна визначити, як функціонал трьох величин:

де з поріг виявлення; тю, / 77ц математичні очікування величини логарифма відношення правдоподібності (ПОП) у разі помилкової тривоги і правильного прийому відповідно; М2о, М21 дисперсії величини ПОП при помилковій тривозі і в разі правильного прийому; F (») інтеграл Лапласа:

Для зручності часто використовується вираз інтеграла Лапласа через функцію помилок:

На підставі (1), використовуючи (4), (5), ймовірність правильного виявлення визначаться методом інтерполяції:

Джерело: Матеріали Міжнародної Кримської конференції «СВЧ-техніка і телекомунікаційні технології», 2003р.